The Cellular EJC Interactome Reveals Higher-Order mRNP Structure and an EJC-SR Protein Nexus

نویسندگان

  • Guramrit Singh
  • Alper Kucukural
  • Can Cenik
  • John D. Leszyk
  • Scott A. Shaffer
  • Zhiping Weng
  • Melissa J. Moore
چکیده

In addition to sculpting eukaryotic transcripts by removing introns, pre-mRNA splicing greatly impacts protein composition of the emerging mRNP. The exon junction complex (EJC), deposited upstream of exon-exon junctions after splicing, is a major constituent of spliced mRNPs. Here, we report comprehensive analysis of the endogenous human EJC protein and RNA interactomes. We confirm that the major "canonical" EJC occupancy site in vivo lies 24 nucleotides upstream of exon junctions and that the majority of exon junctions carry an EJC. Unexpectedly, we find that endogenous EJCs multimerize with one another and with numerous SR proteins to form megadalton sized complexes in which SR proteins are super-stoichiometric to EJC core factors. This tight physical association may explain known functional parallels between EJCs and SR proteins. Further, their protection of long mRNA stretches from nuclease digestion suggests that endogenous EJCs and SR proteins cooperate to promote mRNA packaging and compaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment.

The deposition of proteins onto newly spliced mRNAs has far reaching consequences for their subsequent metabolism. We affinity-purified spliced human mRNPs under physiological conditions from HeLa nuclear extract and present the first comprehensive inventory of their protein composition as determined by mass spectrometry. Several proteins previously not known to be mRNP-associated were detected...

متن کامل

The Hierarchy of Exon-Junction Complex Assembly by the Spliceosome Explains Key Features of Mammalian Nonsense-Mediated mRNA Decay

Exon junction complexes (EJCs) link nuclear splicing to key features of mRNA function including mRNA stability, translation, and localization. We analyzed the formation of EJCs by the spliceosome, the physiological EJC assembly machinery. We studied a comprehensive set of eIF4A3, MAGOH, and BTZ mutants in complete or C-complex-arrested splicing reactions and identified essential interactions of...

متن کامل

The Crystal Structure of the Exon Junction Complex Reveals How It Maintains a Stable Grip on mRNA

The exon junction complex (EJC) plays a major role in posttranscriptional regulation of mRNA in metazoa. The EJC is deposited onto mRNA during splicing and is transported to the cytoplasm where it influences translation, surveillance, and localization of the spliced mRNA. The complex is formed by the association of four proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP. The 2.2 ...

متن کامل

Structural insights into nonsense-mediated mRNA decay (NMD) by electron microscopy.

Nonsense-mediated mRNA decay (NMD) is a pathway that detects and degrades mRNAs containing premature translation termination codons (PTCs). In humans, recognition of these aberrant mRNAs requires an exon-junction-complex (EJC) placed downstream of a PTC and the dynamic interaction of several UPF/SMG proteins, the ribosome and the EJC. These interactions promote UPF1 phosphorylation by SMG1 kina...

متن کامل

A New Mutation, hap1-2, Reveals a C Terminal Domain Function in AtMago Protein and Its Biological Effects in Male Gametophyte Development in Arabidopsis thaliana.

The exon-exon junction complex (EJC) is a conserved eukaryotic multiprotein complex that examines the quality of and determines the availability of messenger RNAs (mRNAs) posttranscriptionally. Four proteins, MAGO, Y14, eIF4AIII and BTZ, function as core components of the EJC. The mechanisms of their interactions and the biological indications of these interactions are still poorly understood i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 151  شماره 

صفحات  -

تاریخ انتشار 2012